Os plásticos vêm sendo cada vez mais utilizados em nosso cotidiano, de múltiplas formas, inclusive nas aplicações para as quais anteriormente utilizavam-se outros materiais. A rápida descartabilidade de alguns objetos e a dificuldade de degradação dos plásticos convencionais acabam causando um grave problema ambiental e têm despertado o interesse no estudo de alternativas que possam minimizar esse impacto ambiental. Dentre essas alternativas está a utilização de biopolímeros, como os polihidroxialcanoatos (PHA's), que são plásticos biodegradáveis sintetizados e acumulados no interior de muitas bactérias como reserva de carbono e energia, em condições desbalanceadas do meio, quando há excesso de carbono e limitação de algum nutriente essencial como fósforo, nitrogênio, potássio, oxigênio.
Os PHA's, além de apresentarem a vantagem da biodegradabilidade, também podem ser produzidos a partir de fontes renováveis de carbono como açúcar, soro de leite e óleos vegetais. Por serem biocompatíveis, também podem ser utilizados na área médico-farmacêutica como fios de sutura, enxertos vasculares, entre outros. Outras possíveis aplicações são em embalagens de cosméticos e alimentos, brinquedos, material escolar, etc.
Polihidroxibutirato (P(3HB)) é o polímero mais estudado dentre os PHA's. Este polímero possui características próximas às encontradas no polipropileno, porém possui pouca estabilidade térmica e é quebradiço. A incorporação de unidades de 3-hidroxivalerato (3HV), através de um precursor como o ácido propiônico, leva à síntese do copolímero poli(3-hidroxibutirato-co-3-hidroxivalerato) (P(3HB-co-3HV)) por Ralstonia eutropha. Este copolímero, por sua vez, apresenta vantagens em relação ao P(3HB), como melhores propriedades termoplásticas, o que o torna mais interessante para aplicações industriais.
R. eutropha é um dos microrganismos mais estudados para a produção de PHA's, devido à sua facilidade de utilização de fontes renováveis e habilidade de acumular até 80% de seu peso seco em polímero. A produção de polímero por R. eutropha é realizada em duas fases, uma fase inicial de crescimento não limitado visando o crescimento celular, seguida de uma fase limitada com acúmulo de polímero.Durante a fase de produção, a alimentação de ácido propiônico conduz à formação do copolímero P(3HB-co-3HV) e a alimentação de pequena quantidade do elemento limitante leva ao aumento do acúmulo de polímero.
Polihidroxibutirato (P(3HB)) é o polímero mais estudado dentre os PHA's. Este polímero possui características próximas às encontradas no polipropileno, porém possui pouca estabilidade térmica e é quebradiço. A incorporação de unidades de 3-hidroxivalerato (3HV), através de um precursor como o ácido propiônico, leva à síntese do copolímero poli(3-hidroxibutirato-co-3-hidroxivalerato) (P(3HB-co-3HV)) por Ralstonia eutropha. Este copolímero, por sua vez, apresenta vantagens em relação ao P(3HB), como melhores propriedades termoplásticas, o que o torna mais interessante para aplicações industriais.
R. eutropha é um dos microrganismos mais estudados para a produção de PHA's, devido à sua facilidade de utilização de fontes renováveis e habilidade de acumular até 80% de seu peso seco em polímero. A produção de polímero por R. eutropha é realizada em duas fases, uma fase inicial de crescimento não limitado visando o crescimento celular, seguida de uma fase limitada com acúmulo de polímero.Durante a fase de produção, a alimentação de ácido propiônico conduz à formação do copolímero P(3HB-co-3HV) e a alimentação de pequena quantidade do elemento limitante leva ao aumento do acúmulo de polímero.
Apesar da grande possibilidade de aplicação do P(3HB-co-3HV), seu uso ainda é limitado devido ao alto custo em relação aos plásticos petroquímicos. Assim, estudos que possam aumentar a produtividade do polímero tornam-se importantes para a redução dos seus custos de produção. Uma opção é a utilização de ácidos graxos como substratos ou suplementos nutricionais na produção de polímero. R. eutropha incorpora os ácidos graxos em suas células e metaboliza-os a acetil-CoA pela via da b-oxidação de ácidos graxos. Na sequência, a biossíntese do polímero leva à formação de monômeros 3-HB-CoA, que são polimerizados formando o P(3HB). Já foi demonstrado que a suplementação de ácido oleico no processo produtivo de PHA por R. eutropha leva a um aumento na produção do polímero. Da mesma forma, estudos anteriores, verificaram que a utilização de óleos vegetais, contendo alta concentração de ácido linoleico, poderia aumentar a produção do polímero, indicando que o ácido linoleico possa ser um bom suplemento nutricional na produção de PHA.
Fonte:Utilização de ácidos linoleico e oleico como suplementos nutricionais aumenta a produção depoli(3-hidroxibutirato-co-3-hidroxivalerato) por Ralstonia eutropha
Cláudia Regina Squio, Cíntia Maria Ferreira e Gláucia Maria Falcão de Aragão
Universidade Federal de Santa Catarina – Depto. de Engenharia Química e Engenharia de Alimentos
Caixa Postal 476 – 88040-900 Florianópolis – SC
Caixa Postal 476 – 88040-900 Florianópolis – SC
0 comentários:
Postar um comentário